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Abstract 

The direct-methods procedure for single isomorphous 
replacement (SIR) data [Hauptman (1982). Acta 
Cryst. A38, 289-294], as modified by Fortier, Moore 
& Fraser [Acta Cryst. (1985), A41,571-577] has been 
implemented and tested with a large number of 
known structures. It was found that the modified 
procedure greatly reduces the bias toward 'unre- 
solved' SIR invariant values associated with estimates 
of 0 or 7r, but does not remove it entirely. If the heavy 
atoms are not in a centrosymmetric array the centroid 
of the distribution of invariant estimates is not cen- 
tered on true protein values, but is biased toward 
conventional SIR values by up to 15 ° , thus errors in 
the estimates are not random but systematic. When 
the heavy atoms are in a centrosymmetric array (or 
single heavy-atom site in space group P21), the distri- 
bution of estimates is often sharply bimodal, with 
peaks centered at both true invariant values and pure 
'unresolved' SIR values. Simple procedures are given 
which can be applied in both situations to reduce 
significantly the bias with no overall loss of accuracy. 
An additional correction factor is then described 
which can be used to remove nearly all of the bias, 
and improve the accuracy as well. The result is that 
errors in the corrected invariant estimates are small 
in magnitude, but are now also random instead of 
systematic. Since the number of estimates greatly 
exceeds the number of phases, the remaining random 
errors should have little impact in phasing processes. 

Introduction 

In recent years, theoretical developments in the area 
of direct methods as applied to protein crystallogra- 
phy have advanced considerably. In particular, a 
theory for the integration of direct methods with 
single isomorphous replacement (Hauptman, 1982) 
looked very promising in that it was possible accu- 
rately to identify large numbers of three-phase struc- 
ture invariants with values of 0 or rr, even for very 
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large structures. Other procedures capable of identify- 
ing invariants with values of 0 or 7r from single- 
isomorphous-replacement data were also developed 
(Karle, 1983; Giacovazzo, Cascarano & Zheng, 1988). 
Unfortunately, it was shown (Xu, Yang, Furey, Sax, 
Rose & Wang, 1984) that invariant values of 0 or rr 
are not particularly useful for protein crystallography 
since they generally correspond to the heavy-atom 
invariants (or heavy-atom invariants plus ~r) of the 
included derivative. Any procedure which forces 
individual phases to satisfy such invariants therefore 
results in producing classical 'unresolved' SIR (single 
isomorphous replacement) phases, since the 
invariants themselves are actually SIR invariants (e.g. 
invariants produced by summing over three SIR 
phases). The realization of the correspondenc'~ with 
SIR phases prompted a re-examination and 
modification of Hauptman's formulation (Fortier, 
Moore & Fraser, 1985) resulting in a new procedure 
which should be considerably more powerful. With 
this modification it is possible accurately to identify 
large numbers of invariants with absolute values any- 
where in the range 0-T r, however, only the magnitude 
of the angle can be identified (i.e. cosine invariant). 
By moving away from 0 and rr values the bias toward 
SIR invariants should be diminished and the resulting 
estimates should become more useful for the determi- 
nation of individual protein phases. 

In all previous studies the proposed methods were 
tested with error-free data, usually for a single struc- 
ture; thus the general applicability has not been 
demonstrated. In the current study we have applied 
the modified formulation of Fortier, Moore & Fraser 
to numerous structures taken from the Protein Data 
Bank (Bernstein et al., 1977) to determine whether 
the accuracy of the estimates is sensitive to space 
group, structure size and heavy-atom substitution 
parameters. It was found that although the Fortier 
modification greatly reduces the bias towards SIR 
invariants, it does not remove it entirely since a 
residual bias of up to 15 ° remains. Several alternative 
modifications to the procedure are now reported, all 
of which lead to further reductions in the bias towards 
SIR, and one which can significantly improve the 
accuracy of the estimates as well. With the n e w  
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modifications the errors have been 'randomized' 
whereas they originally were systematic. Since the 
number of estimates greatly exceeds the number of 
phases, the remaining random error should have little 
impact on individual phase determination. 

IFHIp, ~n,p 

If.l~, ~n,. 

IFnlD, ~n,D 

Definitions 

Native protein structure-factor amplitude and 
phase, respectively, for reflection H. 
Heavy-atom structure-factor amplitude and 
phase, respectively, for reflection H. 
Derivative structure-factor amplitude and 
phase, respectively, for reflection H such that 

IFHID exp (i~H,D) -----IFHIP exp (i~OH,p) 

+ IFnIH exp (i~H,H). 

~ H , S  'Unresolved' SIR phase for reflection H. This 
is the classical SIR phase and corresponds to 
the centroid of the bimodal SIR probability 
distribution. In general, it is the heavy-atom 
phase or the heavy-atom phase + ~- according 
to 

~H,S = ~0H,H if IFn[o > [FHIp 

and 

~H,S ---- ~H,H Jr- 71" if [Enl D < IFHIP. 

~v = ~a,p + g)K.P + ~0L.P Protein invariant when H+K+L=0  
e H =  eH.H + ~0K.H + eL.H Heavy-atom invariant when 

H + K + L = 0 .  
~.IS=~OR,S"~K,S+~OL, S SIR invariant when H + K + L = 0 .  

qJE Estimated value of ~p produced by various 
formulae. 

Absolute Magnitude of the error in qJE, given in degrees, 
error equal to [~bp- q'E] where ~p is computed from 

a known structure and angular differences are 
measured such that they are always less than 
or equal to 180 ° . 

Absolute Magnitude of the difference between a refer- 
deviation ence and target invariant computed as for the 

absolute ergot. Reference and target invariants 
may be ~p, ~s or ~e. 

Detection of bias toward SIR invariants 

There are several ways to evaluate the accuracy of 
invariant estimates, some of which are more useful 
than others. We found that, when dealing with 
isomorphous-replacement or anomalous-scattering 
methods, it is not sufficient to compute only absolute 
errors between invariant estimates ~bE and their 
associated true values q,p, since it does not detect 
systematic error towards invariant values correspond- 
ing to conventional 'unresolved' phases. Elimination 
of such systematic error is very important for the 
following reason. The classical method for determin- 
ing protein phases from SIR data is simple to apply 
and yields phases which are already quite accurate 
when compared only to true values (mean error of 
about 45 ° and maximum error of 90 ° , provided only 
the sign of I FH[D-IFnlp is correct). Nevertheless, 
such phases are not particularly useful since they are 
severely biased towards the heavy-atom phases and 

correspond to extremely noisy electron-density maps. 
On the other hand, multiple isomorphous replace- 
ment phases typically have similar error magnitudes 
when compared to true values, yet yield interpretable 
electron-density maps. The implication is that the 
error magnitudes not only must be reasonably small, 
the distribution of errors must be appropriately cen- 
tered as well. We interpret this to mean that, for any 
phasing method based on SIR data alone to offer 
significant improvements over the conventional 
method, it must yield a phase-error distribution which 
not only has a small variance but is also centered on 
true protein phases with no bias towards classical 
SIR phases. The same logic is assumed to apply when 
dealing with invariants rather than individual phases. 

To determine the nature of the distribution of errors 
in the invariant estimates we use the following pro- 
cedure: for SIR data we compute absolute deviations 
between (1) estimated and true invariants; (2) esti- 
mated and SIR invariants tPs; and (3) true and SIR 
invariants. We then determine distributions of signed 
deviations with respect to both true protein and SIR 
invariants as follows: 

(a) Using SIR invariants q's as a reference point, 
we associate a sign with each absolute deviation (2) 
such that it is negative if the estimate is in the direction 
of the true protein invariant and positive if in the 
opposite direction. A histogram is then accumulated 
showing the distribution of all signed deviations. 

(b) Using true protein invariants ~tp a s  a reference 
point, we associate a sign with each absolute deviation 
(1) such that it is positive if the estimate is in the 
direction of the SIR invariant and negative if in the 
opposite direction. A histogram is then accumulated 
showing the distribution of all signed deviations. 

For each of the distributions (a) and (b), the mean 
and variance are computed. For unbiased estimates 
of protein invariants the distribution (a) should be 
centered on a negative value corresponding to the 
mean absolute deviation between protein and SIR 
invariants. The distribution (b) should be centered 
on zero and have a small variance. Any deviation 
from this pattern would indicate a systematic bias 
towards (or away from) SIR invariants. 

Test results 

The procedure described above was applied to ideal 
(error-free) data for the Bence Jones protein Rhe 
(Furey, Wang, Yoo & Sax, 1983) (space group 
P2~212) after generating estimates of the three-phase 
invariants and the A values indicative of their vari- 
ances according to the procedure of Fortier, Moore 
& Fraser (1985). A 3 site Au derivative was used, with 
heavy-atom parameters as reported by Wang, Yoo & 
Sax (1979). Out of the 2 043 196 invariants linking 
2213 phases (3 A data with E > 0.35), the 27 443 most 
reliable (A>  1.00) were used in the test. Since the 
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procedure produces only magnitude estimates I~1, 
both possible values were tested for each invariant 
and the choice resulting in minimum deviation from 
~,p was used. The mean absolute error ( l~P-  ~el) is 
23"4 ° . However, analysis of the signed deviations as 
described above indicates that nearly half of that error 
can be attributed to a systematic shift towards SIR 
values. The signed distributions are shown in Fig. 1. 
The mean signed deviation of +10.22 ° and the shoul- 
der on the positive side for the distribution with true 
protein invariants as a reference point illustrate the 
systematic bias towards SIR invariants. For the 
original formulation of Hauptman (invariants 0 or 
7r) the situation is much worse, as the distribution is 
centered precisely on SIR values. Thus the Fortier 
modification has indeed improved the results, but a 
systematic bias towards SIR still remains. Further 
analysis of the results indicate that the bias increases 
with decreasing A magnitude (Table 1). To determine 
whether the problem is general in nature or specific 
for the test structure, extensive test calculations were 
performed on 3/~ error-free data for 16 additional 
protein structures, using 33 different heavy-atom- 
derivative combinations. Coordinates were obtained 
from the Protein Data Bank (Bernstein et al., 1977), 
while heavy-atom parameters were taken from the 
original references given in the data bank. Results 
are given in Table 2 and show that the bias is generally 
present, although in varying amounts, regardless of 
the structure size, space group and number of heavy- 
atom sites. It was also found that the overall accuracy 
in the estimates is relatively constant with mean 
absolute errors of 21 + 4 °, provided an A-value cutoff 
of 1-0 is used. The mean bias towards SIR values is 7 °. 

Table 1. Results from the procedure of Fortier, Moore 
& Fraser (1985), when applied to 3 ,A, Bence Jones 

protein Rhe data 

The mean A values, mean absolute errors and mean signed devi- 
ations (using ¢,p as a reference point, as described in the text) are 
given for ranges ofinvariant  estimates grouped in descending order 
of  A. All errors are given in degrees. Positive entries in the last 
column indicate a bias towards 'unresolved' SIR invariant values. 

Number of  
invafiants (A) (l~P - ~ l >  (Sl~p - ~ E I )  

2000 3-546 12.76 2-73 
2000 2.359 16-26 3.99 
2000 1"997 17-78 6"13 
2000 1-776 21.11 8"49 
2000 1-617 21"55 8"79 
2000 1-496 22"38 10-05 
2000 1"401 23.09 10"25 
2000 1.320 25-27 11-72 
2000 1"248 26-18 12"20 
2000 1.187 25"76 11"76 
2000 1"134 27-41 13"45 
2000 1"087 28"84 13"59 
2000 1"046 30"08 14.52 
1443 1"013 31"00 15-56 

Procedure modifications 

On analysis of the results, it was apparent that the 
bias might be correctable, since its magnitude is highly 
correlated with the A values and is relatively constant 
across the range of structures examined. Two simple 
methods were explored to achieve this. 

(1) Determine the magnitude of the bias towards 
SIR as a function of the A value (via polynomial fit) 
with a few known structures. The sign of the correc- 
tion can be deduced by noting that SIR invariants 
~'s, being heavy-atom invariants or heavy-atom 
invariants plus 7r, will tend to have values near 0 or 

ERROR D I STR I BUT I ONS 

SIR 

MEAN I WP - IILJS = . 

-180 -160 -140 -120 -100 -80 -50 -40 -20 

MEAN DEL= - 2 3 . 9 3  
SIGMA= 3 2 . 4 4  

0 20 40 50 80 100 120 140 1~0 

PROTEIN 

-1~0 -140 -120 -100 -80 -60 -40 -20 

MEAN OEL: [O.ZZ 
SIGMA: 31.45 

40 60 80 I00 120 140 160 180 

Fig. 1. Distribution of  signed errors 
in three-phase invariant esti- 
mates for Bence Jones protein 
Rhe, when estimates are 
produced by the Fortier 
modification of  Hauptman's  
theory. Upper  curve uses 
classical 'unresolved' SIR 
invariants as reference point. 
Lower curve uses true protein 
invariants as reference point. 
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Table 2. Summary of results of test calculations on 16 structures with 33 different heavy-atom substitution 
patterns, taken from the Protein Data Bank 

W h e n  the  For t i e r  modi f i ca t ion  o f  H a u p t m a n ' s  f o r m u l a t i o n  is used ,  the  m e a n  abso lu t e  e r ro r  in i n v a r i a n t  es t imates  is 21 ° ( c o l u m n  9) a n d  the  m e a n  b ias  
t owards  ' u n r e s o l v e d '  S I R  va lues  is 7 ° ( c o l u m n  11). Af ter  i nc lus ion  o f  the  h e a v y - a t o m  i n v a r i a n t  ~H as desc r ibed  in this  paper ,  the  m e a n  abso lu t e  er rors  
a n d  bias  t o w a r d s  S I R  b e c o m e  15 a n d  1 °, respect ive ly  ( c o l u m n s  10 a n d  12). I ncons i s t en t  t r ip les  o f  the  type  r epor t ed  by  H a n &  Langs  (1988) were  exc luded  
f rom the results .  

N u m b e r  N u m b e r  N u m b e r  N u m b e r  
N u m b e r  a n d  type  o f  o f  o f  ( [~bp-~E])  

Refe rence  Space  o f  o f  heavy  u n i q u e  accep t ed  p h a s e a b l e  (For t ie r )  
No.  Pro te in  g roup  a toms  a t o m ( s )  i nva r i an t s  i nva r i an t s  ref lect ions (°) 

1. Hen egg white P2 t 2002 4; Hg 3 636 804 68 069 2186 19.1 
lysozyme 

Hen egg white P21 2002 7; Hg 3 413 780 24 112 1826 24.6 
lysozyme 

Hen egg white P2 s 2002 2; U 3 579 012 65 042 1904 17.3 
lysozyme 

2. Ribonuclease A P21 1039 4; Hg 886 738 10 680 1009 24.1 
Ribonuclease A P2 t 1039 3; U 950 070 17 384 1161 22.6 

3. Human P2~ 4779 2; Hg 14 949 510 219 085 4774 19.5 
deoxyhemoglobin 

4. Subtilisin novo P2t 1948 1; T1 3 464 566 151 006 2277 15.5 

5. Alpha P2~ 3719 7; Hg 13 949 388 115 773 4737 24.5 
chymotrypsin 

Alpha P2~ 3719 6; U 14 540 117 432 282 5129 20.6 
chymotrypsin 

(sl~,p - ~'EI) 
(10p-~'E,I> (Fortier)(sl~-~,E,l> 

(°) ( ' )  (°) 

15.2 6.8 0.8 

15.7 10.9 0.9 

16-7 4.6 2.8 

17-7 11.6 5.0 
16.2 10.7 3.4 

15.2 6.8 0.5 

15.5 -0-8 -0.8 

15.0 10-4 1.9 

16.3 9.7 3"3 

Human carbonic P2 t 2040 1; Au 4 660 100 228 944 3571 16.0 16.3 2.6 2.3 
anbydrase C 

Human carbonic P2t 2040 1; Hg 4 642 268 209 689 3543 15.1 15.3 0.2 0.0 
anhydrase C 

Human carbonic P2t 2040 3; I 4917 148 113 687 3688 20.0 15.5 7.7 0.7 
anhydrase C 

7. Carboxypeptidase A P2 t 2445 1; Hg 6 648 522 287 338 3169 15.9 15.9 2-0 1.9 
Carboxypeptidase A P2~ 2445 2; Pb 6 447 745 105 278 3038 19.5 15.0 7.4 1.3 

8. Acid proteinase P2~ 2732 2; Hg 9 431 160 377 538 4808 18.3 17.3 5.4 3.2 
Acid proteinase P2~ 2732 1; Pt 9411 317 434823 4709 17-3 17.2 3.1 3.2 

9. L-Arabinose P212t21 2335 4; Pt 13 192 502 118 618 3268 25.4 13.5 10-6 2.3 
binding protein 

10. Phospholipase A2 P212t21 1080 2; Cd 1 865 987 37 889 1413 21.8 13-2 9.5 2-8 
Phospholipase A2 P212t21 1080 2; Pt 1 691 813 31 653 1191 19-1 13.5 8.3 2.9 

11. Triose phosphate P2t2~2 ~ 3740 4; Hg 30 397 408 225 779 5161 25.2 12.3 8.5 -2.8 
isomerase 

Triose phosphate P2t2121 3740 2; Pt 30 278 624 294 871 5058 22.3 12.8 7.6 -2.3 
isomerase 

12. Cytoplasmic malate P2t2~2 s 4748 3; Hg 21 432 932 111 863 4860 25.6 13.0 10-3 -0.1 
dehydrogenase 

Cytoplasmic malate P2~212 ~ 4748 8; Pt 21 975 732 28 645 3777 36.7 24.7 14.4 7.3 
dehydrogenase 

13. Tuna cytochrome c P21212 900 1; Pt 1 839366 50381 1511 17"7 13"0 1"4 -5"8 
Tuna cytochrome c P21212 900 5; Pt 1 772 406 26 484 1597 26.0 13.3 7.0 -3.7 

14. Staphylococcal P41 1151 1; Ba 3 306 780 53 047 1449 18.8 14.3 5.6 -1.1 
nuclease complex 

Staphylococcal P4 t 1151 1; I 3 177 162 57 243 1521 18.4 13.8 4.8 -1.7 
nuelease complex 

15. Proteinase A P42 1259 1; Hg 4 469 478 97 316 1582 15.8 15.8 0.3 0.3 
Proteinase A P42 1259 2; Hg 4 469 473 46 651 2036 22.6 14.7 8.4 -0-2 
Proteinase A P42 1259 1; Re 4246539 102457 1614 15.8 15.8 1.1 1.2 

16. Oxidized cytocbrome e P43 1743 3; Au 5 675 079 85 019 2059 21.0 13.8 7.8 -0.7 
Oxidized cytoehrome c P43 1743 2; lr 5 730 515 122 528 2141 20.4 14-1 6.4 -2 .2  
Oxidized cytochrome e P43 1743 2; Pt 5 516 784 66 301 1941 23.3 13.8 10.5 0.8 

Heavy-atom parameters for each of the structures were obtained from the following references: 

1. Hogle, J., Rao, S. T., Mallikarjunan, M., Bedell, C., McMullan, R. K. & Sundaralingam, M. (1981). Acta Cryst. B37, 591-597. 
2. Carlisle, C. H., Palmer, R. A., Mazumdar, S. K., Gorinsky, B. A. & Yeates, D. G. R. (1974). J. Mol. Biol. 85, 1-18. 
3. Ten Eyck, L. F. & Arnone, A. (1976). J. Mol. Biol. 100, 3-11. 
4. Drenth, J., Hol, W. G. J., Jansonius, J. N. & Koekok, R. (1972). Eur. J. Biochem. 26, 177-181. 
5. Tulinsky, A., Mani, N. V, Morimoto, C. N. & Vandlen, R. L. (1973). Acta Cryst. B29, 1309-1322. 
6. Liljas, A., Kannan, K. K., Bergsten, P.-C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Jarup, L., Lovgren, S. & Peter, M. (1972). Nature (London) New Biol. 235, 131-137. 
7. Quiocho, F. A. & Lipscomb, W. N. (1971). Adv. Protein Chem. 25, 1-78. 
8. Jenkins, J. A., Blundell, T. L., Tickle, I. J. & Ungaretti, L. (1975). J. Mol. Biol. 99, 583-590. 
9. Gilliland, G. L. & Quioeho, F. A. (1981). J. Mol. BioL 146, 341-362. 
10. Dijkstra, B. W., Kalk, K. H., Hol, W. G. & Drenth, J. (1981). J. Mol. Biol. 147, 97-123. 
11. Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C., Pogson, C. I., Wilson, I. A., Corran, P. H., Furth, A. J., Milman, J. D., Offord, R. E., Priddle, J. D. & Wiley, S. G. 

(1975). Nature (London), 255, 609-614. 
12. Tsernoglou, D., Hill, E. & Banaszak, L. J. (1972). J. Mol. Biol. 69, 75-87. 
13. Takano, T., Kallai, O. B., Swanson, R. & Dickerson, R. E. (1973). J. Biol. Chem. 248, 5234-5255. 
14. Arnone, A., Bier, C. J., Cotton, F. A., Day, V. W., Hazen, E. E. Jr, Richardson, D. C., Richardson, J. S. & Yonath, A. (1971). J. Biol. Chem. 246, 2302-2316. 
15. Brayer, G. D., Delbaere, L. T. J. & James, M. N. G. (1978). J. Mol. Biol. 124, 243-259. 
16. Swanson, R., Trus, B. L., Mandel, N., Mandel, G., Kallai, O. B. & Dickerson, R. E. (1977). J. Biol. Chem. 252, 759-775. 
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zr. This  is a c o n s e q u e n c e  o f  the fact  tha t  the heavy-  
a tom invar ian t s  themse lves  shou ld  be nea r  0 since 
they  c o r r e s p o n d  to a s t ruc ture  with on ly  a few a toms 
in the un i t  cell. Accord ing ly ,  the app rop r i a t e  sign to 
use is tha t  wh ich  moves  the  invar i an t  es t imate  away  
f rom the real  axis, i.e. pushes  the es t imate  away  f rom 
SIR. Al te rna t ive ly ,  one  can  s imply  c o m p u t e  the 
heavy -a tom invar ian t s  and  choose  the sign which  
maximizes  the  separa t ion .  Results  for  the Bence Jones  
p ro te in  Rhe  are shown  in Fig. 2 when  the es t imates  

are cor rec ted  acco rd ing  to 

I V:lco,r = I ~,~1 + S x  IBIASl, 

where  IBIASI is o b t a i n e d  f rom the p o l y n o m i a l  fit and  
S =  1.0 i f  I~EI < 9 0  ° and  S = - I . 0  i f  Ig, EI > 90 °. The  
m e a n  abso lu te  er ror  is essent ia l ly  u n c h a n g e d  (23.8°), 
bu t  the bias towards  S IR  is r educed  to abou t  +4 .0  ° . 
A shou lde r  remains  on  the  posi t ive  side, however ,  as 
a res idual  bias still exists. 

S I R  

MEAN l I,.~p _ l i d s  

ERROR D I STR I BUT I ONS 

MEAN DEL= - 3 0 . 3 5  
SIGMA= 3 4 . 0 5  

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 4,0 60 80 100 120 140 160 

PROTEIN 

MEAN DEL= 3.94 
= 31 . 0 9  

_ ,  ~ , / " ]  . .  

-I~O -14o - [Zo -IO0 -80 -60 -40 -,7'0 o 2,o 4.0 6.0 8o ioo 12'o 14,o 16o 18o 

Fig. 2. Distribution of signed errors 
for Bence Jones protein Rhe (as 
in Fig. 1), when invariant esti- 
mates are corrected according 
to I~'1 .... =I~'EI+SxlBIASl, 
where S= 1.0 if Ig, El<90 ° and 
s = - l . 0  if I~,EI>90 °. IB]ASI is 
determined from a polynomial 
fit to A values from several 
known structures. Note the bias 
towards SIR has been reduced 
to +4"0  ° . 

ERROR D I STR I BUT I ONS 

S I R  

- = . 

-180 -160 -140 -120 -100 -B0 -G0 -40 -20 

MEAN DEL= -34.2G 
SIGMA= 40.00 

20 40 60 80 I00 120 140 160 

PROTEIN 

MEAN DEL= -0.88 
SIGMA: 3 3 . 9 5  

-160 -140 -120 - I00  -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 

Fig. 3. Distribution of signed errors 
for Bence Jones protein Rhe (as 
in Fig. 1), when invariant esti- 
mates are obtained by averaging 
only over the two vectors with 
greatest deviation from 0 or or. 
Note that the resulting curve is 
symmetrical about the true pro- 
tein invariants, with essentially 
no bias towards SIR (actually a 
slight bias of less than 1.0 ° away 
from SIR). The mean absolute 
error has only slightly increased 
(to 25.1°). 
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(2) The procedure as outlined by Fortier, Moore 
& Fraser (1985) involves taking a weighted average 
over four possible vectors to estimate the value of 
each invariant. Since we know that this results in a 
bias towards SIR values (and therefore towards 0 or 
zr), we can instead average only over a subset of the 
four vectors, selectively rejecting those that are close 
to 0 (or zr). The resulting estimate should then slowly 
move away from the real axis as more contributing 
vectors are rejected. Best results are obtained when 
only the two vectors nearest the imaginary axis are 
used (Fig. 3). Note that in comparison to Figs. 1 and 
2 the signed distribution is now centered on the true 
protein invariants, with little bias towards SIR. 
Equally important is the fact that the mean absolute 
error in the estimates has only slightly increased (to 
25°), thus we have not introduced any major errors; 
we merely have 'randomized' what originally was 
systematic error towards 'SIR'. 

Although effective, procedures (1) and (2) are semi- 
empirical. A more powerful correction may be 
obtained if one examines the modification procedure 
of Fortier et  al., and recasts it in terms of conventional 
protein crystallographic notation. For single isomor- 
phous replacement measurements, from a knowledge 
of native and derivative amplitudes and heavy-atom 
information, protein phases can be determined from 

~,H.,, - ,t,~.,-, + c o s - '  [(IF~l~o-IF~l%-lFHl~) 
x (21F.l,,l F.-.l,-,)- q 

= q,.-,,,-, ± la . l .  ( I )  

By direct substitution, qSe is then given by 

-- q, .  + IA-I + I& l  ~,la,l. (2) 

Because of the sign ambiguities there are eight ver- 
sions of (2), only one of which can be correct: 

q,,_, + la~l + laKI + la,.I = q,,,l (2a) 

q,,-, + la~l + la,,I - la,J = q,,.= (2b) 

q,H + I A H I - I A ~ I + I A ,  I = ~ , , ,  ( 2 c )  

q,,, + I A H I - l A d - I & l  = i f /P4  (2d) 

q,,, -IAHI + l a d  + l a , J - -  q,p, (2e) 

qm -- lAd + l a d  --lALI ---- ~p6 (2f) 

q , , - -  laHI-- lAd + lAd = q,~7 (2g) 

q , , -  l a , I -  l a d -  la,  I = ¢~8. (2h) 

The eight versions can be partitioned into two groups 
which are enantiomorphically related about the 
heavy-atom invariant qJn. Although not cast in this 
form, the procedure of Fortier et  al. also involves 
generation of eight possibilities which are separated 
into two groups (enantiomorphically related about 
zero). We now seek to relate the procedures. 

In the reported procedure (Fortier) weights (A 
values) and invariant estimates are computed for all 
eight possibilities and, since they are enantiomorphi- 
cally related, a weighted average of the appropriate 
four are used to obtain an estimate of the invariant 
magnitude I q'~l. The weighting function [equation 
(16) of Fortier, Moore & Fraser (1985)] depends on 
the spread of values, and is such that the resultiog 
weighted average is deemed accurate (large A value) 
if all four contributors cluster near a single value. In 
this way the average will always be a good approxima- 
tion to whichever of the four is actually correct (in 
magnitude). 

Were it not for the term qJH, it is obvious that similar 
results should be obtainable by identifying cases of 
clustering of the appropriate four estimates above, 
and again taking a suitable weighted average. It is 
important to note that the term ~0H destroys the sym- 
metry about zero, thus the two procedures are not 
equivalent. One could, however, form the weighted 
average using only the IA[ terms, and then add and 
subtract it from q~H to again form two possible esti- 
mates. Note that the two procedures are equivalent 
if the heavy-atom invariant qJH is 0 or zr. Since the 
equations above which include qJn are exact, one can 
conclude that the procedure of Fortier must implicitly 
assume all heavy-atom invariants are zero (or zr). 
While this is probably not a bad assumption given 
the small number of heavy-atom sites typically in- 
volved, the procedure could be improved by modify- 
ing it to include the qJH term. 

To determine the effectiveness of the modification 
outlined above, new sets of corrected invariant esti- 
mates ~b~ were generated according to 

q&= ±Iq, EI + qm 

for the same set of structures as before, where [~0~1 
is computed using the procedure of Fortier. The 
results were evaluated in a manner similar to that 
described earlier; however, the two possible estimates 
for each invariant are no longer enantiomorphically 
related. For Bence Jones protein Rhe the resulting 
distributions of signed deviations are shown in Fig. 
4 and for other structures the results are summarized 
in Table 2. For most structures the bias towards SIR 
invariants is significantly reduced, and the accuracy 
is improved as well. For some structures the absolute 
deviations from true protein invariants were cut in 
half, while in no cases did the errors increase by more 
than 0.3 ° . After applying the correction, the mean 
absolute error over all structures was 15 + 2 °, and the 
mean bias towards SIR was 0.8 ° . In some situations 
when there was an extremely small number of heavy 
atoms included in the cell (usually space group P21 
with only one or two sites of substitution) no detect- 
able change occurred. In the orthorhombic space 
groups apparently even one or two heavy-atom sites 
are enough to lead to significant deviations from zero 
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for heavy-a tom invariants,  and thus to improvements  
in the estimates. 

Since the procedure  is easy to apply,  never degrades  
the estimates and often significantly improves them, 
it probably  should be used in all cases regardless of  
the space group and number  of  heavy-atom sites. 

Space-group and heavy-atom considerations 

With the procedure  of  Fortier,  Moore  & Fraser  (1985), 
it was claimed that  there should be no problem with 

situations in which the heavy-a tom derivatives form 
a centrosymmetr ic  array.  We found that  in such cases 
the distribution of  errors in the invariant  estimates is 
quite different, f requent ly resulting in a sharply  
bimodal  pat tern  (Fig. 5). One of  the peaks is centered 
near  the true protein invariants (but still d isplaying 
a residual bias as in the general  case); the other  is 
very sharp and is centered essentially on pure  SIR 
invariants.  This situation exists in polar  space groups 
when there is only a single heavy-atom site (or two 
sites with the same y coordinate  in P21). For tunate ly  

ERROR D I ST R I BUT [ ONS 

S[R  

I 
-180 -IC~O -140 -120 -I00 -80 -60 -40 -20 0 20 

PROTE [ N 

-1'~0 -140 -120 -100 -80 -60 -40 -7'0 20 40 60 

MEAN DEL= - 3 5 . 2 8  
SIGMA= 1 4 . 7 6  

40 80 80 I 00 120 140 180 

MEAN DEL= -I .40 
SIGMA= 1 7 . 0 6  

80 100 120 140 160 180 

Fig. 4. Distribution of signed errors 
for Bence Jones protein Rhe (as 
in Fig. 1), when heavy-atom 
invariant correction is included. 
The mean absolute error is only 
13.8 °, and the bias is actually 
away from SIR by 1.4 °. 

ERROR D I S T R I B U T I O N S  

SIR 

MEAN IUI~P - II~SI -- . 

-200 -180 - I 0 0  -140 -120 -100 -80 "GO -40 -20 20 40 60 80 100 120 140 

PROTE [ N 

~"~. MEAN DEL:  1 3 . 4 4  
= 3 . 1 0  

-IG0 -140 -17'0 -100 -80 -GO -40 -20 20 40 GO 80 100 120 140 t~0 180 

MEAN DEL-- -2G. i 0 
SIGMA= 25.00 

Fig. 5. Distribution of signed errors 
in invariant estimates for human 
deoxyhemoglobin, determined 
from a two-site mercury deriva- 
tive. The space group is P2~ with 
the two sites having the same y 
coordinate. The heavy-atom 
invariant correction has not been 
applied. Note the bimodal 
nature of the distribution when 
SIR values are used as a refer- 
ence point. Estimates near SIR 
values are readily identified, and 
should probably not be used for 
phasing. 
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the peak centered on SIR values usually represents 
only a small fraction of the total number of invariants 
(typically < 10%), and they can be readily identified. 
We found that in these cases simply rejecting all 
estimates near the corresponding SIR invariants 
(within 5 °) results in error distributions similar to 
those found in the general case. Thus it should still 
be possible to obtain unbiased protein phases from 
the remaining invariant estimates. It is useful to do 
this for all space groups even when the heavy-atom- 
invariant correction is included, except when the trip- 
let consists of all centric reflections. 

unbiased with randomly distributed errors, should be 
better suited for use in phase-determining procedures. 

Finally, it must be noted that although the pro- 
cedures outlined can be used to reduce both the 
absolute errors and bias towards SIR inherent in the 
estimates, they do not resolve the twofold ambiguity 
in that there are still two equally probable estimates 
for each invariant. Work is under way in our labora- 
tory and elsewhere (Hao Quan & Fan Hai-Fu, 1988; 
Klop, Krabbendam & Kroon, 1987; Langs, 1986; Fan 
Hai-Fu, Han Fu-son, Qian Jin-zi & Yao Jia-xing, 
1984) to resolve this difficulty by various procedures. 

Summary 
The procedure for estimating three-phase structure 
invariants from single isomorphous replacement data 
(Hauptman, 1982) as modified by Fortier, Moore & 
Fraser (1985) has been extensively tested on over 260 
million invariants computed from 17 protein struc- 
tures and 34 heavy-atom derivatives. It was found 
that the procedure can provide reasonably accurate 
values for any protein and derivative combination. 
Although the modification of Fortier greatly reduces 
systematic bias towards 'unresolved SIR values', a 
residual bias still remains. This residual bias can be 
further reduced, or eliminated, by one of several 
procedures described in this manuscript. If a correc- 
tion term is added to account for the heavy-atom 
invariant, the accuracy is often improved as well. 
When applied to systems with heavy atoms in a cen- 
trosymmetric arrangement, the distribution of errors 
in the estimates is frequently bimodal, with the major 
peak centered on the true protein invariants and the 
minor peak on their SIR counterparts. The estimates 
near SIR values are readily identified and can be 
removed, leaving an acceptable distribution of errors 
in the remaining estimates. The new estimates, being 
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Abstract 

The effects of X-ray reflection phases on the surface- 
reflected intensity, the dispersion surface and the 
excitation of modes of wave propagation of three- 

beam grazing-incidence X-ray diffraction are investi- 
gated via numerical calculations, based on the 
dynamical theory. Possible ways of determining the 
triplet phases involved are demonstrated. The Aufhel- 
lung and Umweganregung interactions and the 
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